當(dāng)前位置:大學(xué)路 > 教育資訊 >正文

【技巧】中考數(shù)學(xué)各題型考試常用技巧,趕快來看??!

更新:2020年02月20日 17:37 大學(xué)路
高考是一個是一場千軍萬馬過獨(dú)木橋的戰(zhàn)役。面對高考,考生總是有很多困惑,什么時候開始報名?高考體檢對報考專業(yè)有什么影響?什么時候填報志愿?怎么填報志愿?等等,為了幫助考生解惑,大學(xué)路整理了【技巧】中考數(shù)學(xué)各題型考試常用技巧,趕快來看!!相關(guān)信息,供考生參考,一起來看一下吧【技巧】中考數(shù)學(xué)各題型考試常用技巧,趕快來看??!

  1選擇題的解法

  1、直接法:

  根據(jù)選擇題的題設(shè)條件,通過計算、推理或判斷,,最后得到題目的所求。

  2、特殊值法:

 ?。ㄌ厥庵堤蕴ǎ┯行┻x擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);

  在解這類選擇題時,可以考慮從取值范圍內(nèi)選取某幾個特殊值,代入原命題進(jìn)行驗證,然后淘汰錯誤的,保留正確的。

  3、淘汰法:

  把題目所給的四個結(jié)論逐一代回原題的題干中進(jìn)行驗證,把錯誤的淘汰掉,直至找到正確的答案。

  4、逐步淘汰法:

  如果我們在計算或推導(dǎo)的過程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;每走一步都與四個結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個錯誤的結(jié)論就被全部淘汰掉了。

  5、數(shù)形結(jié)合法:

  根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解題思路,使問題得到解決。

  2常用的數(shù)學(xué)思想方法

  1、數(shù)形結(jié)合思想:

  就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。

  2、聯(lián)系與轉(zhuǎn)化的思想:

  事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。

  在解題時,如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡。

  如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動與靜的轉(zhuǎn)化等等。

  3、分類討論的思想:

  在數(shù)學(xué)中,我們常常需要根據(jù)研究對象性質(zhì)的差異,分各種不同情況予以考查;這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時也是一種重要的解題策略。

  4、待定系數(shù)法:

  當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。

  5、配方法:

  就是把一個代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。

  6、換元法:

  在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進(jìn)一步解決問題的一種方法。換元法可以把一個較為復(fù)雜的式子化簡,把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡,化難為易的目的。

  7、分析法:

  在研究或證明一個命題時,又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個條件的成立還不顯然;則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”

  8、綜合法:

  在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?/p>

  9、演繹法:

  由一般到特殊的推理方法。

  10、歸納法:

  由一般到特殊的推理方法。

  11、類比法:

  眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;根據(jù)它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。

  3函數(shù)、方程、不等式

  常用的數(shù)學(xué)思想方法:

 ?、艛?shù)形結(jié)合的思想方法。

 ?、拼ㄏ禂?shù)法。

 ?、桥浞椒ā?/p>

 ?、嚷?lián)系與轉(zhuǎn)化的思想。

  ⑸圖像的平移變換。

  4證明角的相等

  1、對頂角相等。

  2、角(或同角)的補(bǔ)角相等或余角相等。

  3、兩直線平行,同位角相等、內(nèi)錯角相等。

  4、凡直角都相等。

  5、角平分線分得的兩個角相等。

  6、同一個三角形中,等邊對等角。

  7、等腰三角形中,底邊上的高(或中線)平分頂角。

  8、平行四邊形的對角相等。

  9、菱形的每一條對角線平分一組對角。

  10、等腰梯形同一底上的兩個角相等。

  11、關(guān)系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所對的圓心角相等。

  12、圓內(nèi)接四邊形的任何一個外角都等于它的內(nèi)對角。

  13、同弧或等弧所對的圓周角相等。

  14、弦切角等于它所夾的弧對的圓周角。

  15、同圓或等圓中,如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。

  16、全等三角形的對應(yīng)角相等。

  17、相似三角形的對應(yīng)角相等。

  18、利用等量代換。

  19、利用代數(shù)或三角計算出角的度數(shù)相等

  20、切線長定理:

  從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,并且這一點(diǎn)和圓心的連線平分兩條切線的夾角。

  5證明直線的平行或垂直

  1、證明兩條直線平行的主要依據(jù)和方法:

 ?、哦x、在同一平面內(nèi)不相交的兩條直線平行。

  ⑵平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。

 ?、瞧叫芯€的判定:同位角相等(內(nèi)錯角或同旁內(nèi)角),兩直線平行。

 ?、绕叫兴倪呅蔚膶吰叫?。

 ?、商菪蔚膬傻灼叫?。

 ?、嗜切危ɑ蛱菪危┑闹形痪€平行與第三邊(或兩底)

 ?、艘粭l直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,則這條直線平行于三角形的第三邊。

  2、證明兩條直線垂直的主要依據(jù)和方法:

 ?、艃蓷l直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。

  ⑵直角三角形的兩直角邊互相垂直。

  ⑶三角形的兩個銳角互余,則第三個內(nèi)角為直角。

 ?、热切我贿叺闹芯€等于這邊的一半,則這個三角形為直角三角形。

 ?、扇切我贿叺钠椒降扔谄渌麅蛇叺钠椒胶?,則這邊所對的內(nèi)角為直角。

 ?、嗜切危ɑ蚨噙呅危┮贿吷系母叽怪庇谶@邊。

 ?、说妊切蔚捻斀瞧椒志€(或底邊上的中線)垂直于底邊。

 ?、叹匦蔚膬膳R邊互相垂直。

 ?、土庑蔚膶蔷€互相垂直。

 ?、纹椒窒遥ǚ侵睆剑┑闹睆酱怪庇谶@條弦,或平分弦所對的弧的直徑垂直于這條弦。

 ?、习雸A或直徑所對的圓周角是直角。

 ?、袌A的切線垂直于過切點(diǎn)的半徑。

 ?、严嘟粌蓤A的連心線垂直于兩圓的公共弦。

(責(zé)任編輯:重慶課外輔導(dǎo)專注教育)

以上就是大學(xué)路為大家?guī)淼摹炯记伞恐锌紨?shù)學(xué)各題型考試常用技巧,趕快來看!!,希望能幫助到廣大考生!
免責(zé)聲明:文章內(nèi)容來自網(wǎng)絡(luò),如有侵權(quán)請及時聯(lián)系刪除。
與“【技巧】中考數(shù)學(xué)各題型考試常用技巧,趕快來看??!”相關(guān)推薦

每周推薦




最新文章

熱門高校 更多




聯(lián)系我們 - 課程中心
  魯ICP備18049789號-7

2020大學(xué)路版權(quán)所有 All right reserved. 版權(quán)所有

警告:未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品